High temporal resolution functional MRI using parallel echo volumar imaging.
نویسندگان
چکیده
PURPOSE To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. MATERIALS AND METHODS An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5T whole-body MR system, while submitted to a slow event-related auditory paradigm. RESULTS Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts, activations were detected in the temporal lobes of both volunteers and voxelwise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. CONCLUSION This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools, this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and nonstationarities of the BOLD response.
منابع مشابه
Geometric distortion correction in echo volumar imaging
Introduction: Echo volumar imaging (EVI) is a 3D extension of echo-planar imaging (EPI) that allows data from an entire volume to be acquired following a single excitation. However, only a few studies to date have applied EVI to functional MRI (fMRI) due to its high sensitivity to field-inhomogeneity induced distortions. In this study, we extend two EPI distortion correction techniques to EVI: ...
متن کاملEnhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging
In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution ...
متن کاملSuperresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging
Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complet...
متن کاملAn investigation into the effect of magnetic resonance imaging (MRI) echo time spacing and number of echoes on the sensitivity and dose resolution of PAGATUG polymer-gel dosimeter
Background: There are various methods to read out responses of a polymer-gel dosimeter, among which the Magnetic Resonance Imaging (MRI) technique is the most common one. Optimizing imaging protocols can have significant effect on the sensitivity and the dose resolution of polymer gel dosimeters. This study has investigated the effects of the number of echoes (NOE) and the echo time spacing (ES...
متن کاملThree-dimensional echo planar imaging with controlled aliasing: A sequence for high temporal resolution functional MRI.
PURPOSE In this work, we combine three-dimensional echo planar imaging (3D-EPI) with controlled aliasing to substantially increase temporal resolution in whole-brain functional MRI (fMRI) while minimizing geometry-factor (g-factor) losses. THEORY AND METHODS The study was performed on a 7 Tesla scanner equipped with a 32-channel receive coil. The proposed 3D-EPI-CAIPI sequence was evaluated f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2008