High temporal resolution functional MRI using parallel echo volumar imaging.

نویسندگان

  • Cécile Rabrait
  • Philippe Ciuciu
  • Alejandro Ribés
  • Cyril Poupon
  • Patrick Le Roux
  • Ghislaine Dehaine-Lambertz
  • D Le Bihan
  • F Lethimonnier
چکیده

PURPOSE To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. MATERIALS AND METHODS An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5T whole-body MR system, while submitted to a slow event-related auditory paradigm. RESULTS Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts, activations were detected in the temporal lobes of both volunteers and voxelwise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. CONCLUSION This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools, this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and nonstationarities of the BOLD response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric distortion correction in echo volumar imaging

Introduction: Echo volumar imaging (EVI) is a 3D extension of echo-planar imaging (EPI) that allows data from an entire volume to be acquired following a single excitation. However, only a few studies to date have applied EVI to functional MRI (fMRI) due to its high sensitivity to field-inhomogeneity induced distortions. In this study, we extend two EPI distortion correction techniques to EVI: ...

متن کامل

Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging

In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution ...

متن کامل

Superresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging

Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complet...

متن کامل

An investigation into the effect of magnetic resonance imaging (MRI) echo time spacing and number of echoes on the sensitivity and dose resolution of PAGATUG polymer-gel dosimeter

Background: There are various methods to read out responses of a polymer-gel dosimeter, among which the Magnetic Resonance Imaging (MRI) technique is the most common one. Optimizing imaging protocols can have significant effect on the sensitivity and the dose resolution of polymer gel dosimeters. This study has investigated the effects of the number of echoes (NOE) and the echo time spacing (ES...

متن کامل

Three-dimensional echo planar imaging with controlled aliasing: A sequence for high temporal resolution functional MRI.

PURPOSE In this work, we combine three-dimensional echo planar imaging (3D-EPI) with controlled aliasing to substantially increase temporal resolution in whole-brain functional MRI (fMRI) while minimizing geometry-factor (g-factor) losses. THEORY AND METHODS The study was performed on a 7 Tesla scanner equipped with a 32-channel receive coil. The proposed 3D-EPI-CAIPI sequence was evaluated f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2008